Synthesis of novel 2,6-disubstituted-3,4-dimethylidene tetrahydropyrans *via* Prins-type cyclization[†]

Yong Seo Cho,* Kaliyan Karupaiyan, Hyun Jung Kang, Ae Nim Pae,* Joo Hwan Cha, Hun Yeong Koh and Moon Ho Chang

Biochemicals Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Korea

Received (in Cambridge, UK) 27th June 2003, Accepted 30th July 2003 First published as an Advance Article on the web 8th August 2003

Synthesis of novel substituted tetrahydropyrans with adjacent *exo*-methylene groups at the C3 and C4 positions *via* Prins-type cyclization has been described.

Tetrahydropyrans are structural features of a variety of biologically active natural products such as polyether antibiotics, marine toxins, and pheromones.¹ Prins cyclization is a powerful method of preparing tetrahydropyran rings. A number of groups have been investigating Prins cyclization reactions and applying these reactions to natural product syntheses.² In most cases, these cyclic compounds are either 2,6-disubstituted dihydropyran or 2,4,6-trisubstituted tetrahydropyran derivatives.

Herein, we report a novel synthesis of 2,6-disubstituted-3,4-dimethylidene tetrahydropyan derivatives *via* Prins-type cyclization. The required homoallenyl alcohol **1** was prepared in good yield by the reported procedure modifying the solvent to 25% aqueous THF instead of DMF for convenience, as shown in Scheme $1.^3$

$$\begin{array}{c} O \\ R^1 \\ H \end{array} + \begin{array}{c} Br \\ Br \\ SiMe_3 \end{array} \xrightarrow{In, aq. THF} OH \\ 65 \sim 75\% \end{array} + \begin{array}{c} OH \\ R^1 \\ R^1 \\ SiMe_3 \end{array}$$

Scheme 1 Preparation of homoallenyl alcohol.

An optimized reaction system of the Prins-type cyclization of homoallenyl alcohol was observed using TMSOTf as a Lewis acid in diethyl ether. The reaction of homoallenyl alcohol **1** with aldehyde **2** (2.0 equiv.) in the presence of TMSOTf (1.5 equiv.) at -78 °C in diethyl ether proceeded smoothly to furnish 2,6-disubstituted tetrahydropyrans **3** with two adjacent *exo*methylene groups at C3 and C4 positions in excellent yields. The results of the Prins-type cyclization reactions of homoallenyl alcohols are provided in Table 1.

NOE experiments of a cyclic product **3** showed that the R^1 and R^2 groups are in position with a *cis* relationship (Fig. 1). The R^1 and R^2 groups must have been equatorially disposed *via* a chair like transition state as shown in Fig. 2.

It was observed that most cases of the reaction of homoallenyl alcohols (entries 1–3) with R^1 = phenyl had longer reaction times (5–7 h) and the yield was little decreased compared with other homoallenyl alcohols where R^1 = benzyl or ethyl. In the case of R^1 = benzyl or ethyl, the reactions were completed in 2–5 h to afford products in very high yield. When we used a compound containing two aliphatic substituents (entry 8), a lower yield was obtained which could be attributed to the volatility of compound **3h** (entry 8).

To survey the scope of this method, we investigated a Prinstype reaction of various long chain aldehydes bearing an unsaturated carbon–carbon bond with a phenyl β -hydroxy allenylsilane under the same reaction conditions. The results are summarized in Table 2. The various substituted aldehydes

† Electronic Supplementary Information (ESI) available: Experimental section. See http://www.rsc.org/suppdata/cc/b3/b307320c/

	SiMe ₃	+ R ² H	R ² TMSOTf Et₂O, -78°C	
	1	2		3
Entry	\mathbb{R}^1	R ²	Time/h	Yield (%) ^b
1	Ph	Ph	5.0	3a (80)
2	Ph	Bn	7.5	3b (61)
3	Ph	Et	7.0	3c (98)
4	Bn	Bn	5.0	3d (91)
5	Bn	Et	4.0	3e (98)
6	Bn	Propyl	4.0	3f (92)
7	Bn	3-Furyl	4.0	3g (95)
8	Et	Et	4.5	3h (75)
9	Ph	Contraction of the second seco	4.0	3i (100)
10	Bn	کر OAc	4.5	3j (94)
11	Et	Bn	3.5	3k (100)
12	Bn	کر OAc	2.0	3l (86)
13	Ph	کر OAc	5.0	3m (86)
a All rea	ctions were con	lucted in dry Et.O	at -78 °C in the	presence of 1.5

Table 1 Synthesis of 2,6-disubstituted-3,4-dimethylidene tetrahydropyr-

 a All reactions were conducted in dry Et₂O at -78 °C in the presence of 1.5 eq. TMSOTf. b Isolated yield.

having alkynyl groups (entries 1–3) or alkenyl groups (entries 4–6) could afford the desired products **4** in good yields. However, these yields were somewhat lower compared to those of the simple aldehydes in Table 1.

These resulting dimethylidene tetrahydropyran derivatives could be conveniently used as good partners for dieneophiles in the Diels–Alder reaction to prepare various polycyclic pyrans.

In conclusion, we have developed a novel methodology for the synthesis of *cis*-2,6-disubstituted-3,4-dimethylidene tetra-

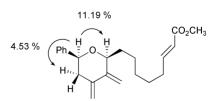
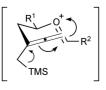



Fig. 1 NOE of compound 4f.

10.1039/b307320c

ЫÖ

OH Ph	SiMe ₃	+ R ² H	TMSOTf Et₂O, -78°C	Ph O R ²		
Entry	R ²		Time/h	Yield (%) ^b		
1	is the		3.0	4a (86)		
2	is the second	СН₃	3.0	4b (81)		
3	is the	Ph	3.5	4c (70)		
4	is for the second secon	CN	3.0	4d (71)		
5	is H3	CO2CH3	4.0	4e (78)		
6	is Ha	CO2CH3	4.0	4f (60)		
^{<i>a</i>} All reactions were conducted in dry Et ₂ O at -78 °C in the presence of 1.5						

Table 2 Synthesis of 2,6-disubstituted-3,4-dimethylidene tetrahydropyr-
ans a

eq. TMSOTf. ^b Isolated yield.

hydropyan derivatives *via* a Prins-type cyclization reaction using TMSOTf as a Lewis acid in diethyl ether. Further studies

to apply these 3,4-dimethylidene tetrahydropyans to synthesise various polycyclic pyrans are in progress.

This project was supported by the Korea Ministry of Science and Technology (Critical Technology-21) and KIST. The authors would like to express their sincere thanks to Professor B. M. Trost (Stanford University, USA) and Professor P. H. Lee (Kangwon National University, S. Korea) for providing the procedures to prepare allenyl bromide.

Notes and references

- (a) Polyether Antibiotics, ed. J. W. Westley, Marcel Dekker, NewYork, 1983, vols I and II; (b) D. J. Faulkner, *Nat. Prod. Rep.*, 1998, 15, 113and earlier reviews in this series (c) M. C. Elliott, *Contemp. Org. Synth.*, 1997, 4, 238and earlier reviews in this series.
- 2 (a) Y. S. Cho, H. Y. Kim, J. H. Cha, A. N. Pae, H. Y. Koh, J. H. Choi and M. H. Chang, Org. Lett., 2002, 4, 2025–2028; (b) S. D. Rychnovsky and C. R. Thomas, Org. Lett., 2000, 2, 1217–1219; (c) J. Yang, G. S. Viswanathan and C-J. Li, Tetrahedron Lett., 1999, 40, 1627–1630; (d) G. S. Viswanathan, J. Yang and C-J. Li, Org. Lett., 1999, 1, 993–995; (e) C-J. Li and W-C. Zhang, Tetrahedron, 2000, 56, 2403–2411; (f) X-F. Yang, J. T. Mague and C-J. Li, J. Org. Chem., 2001, 66, 739–747; (g) J. Li and C-J. Li, Tetrahedron Lett., 2001, 42, 793–796; (h) J. B. Robbins, R. Schneerson, P. Anderson and D. H. Smith, J. Am. Med. Assoc., 1996, 276, 1181–1185.For reviews of the Prins reaction, see (i) D. R. Adams and S. D. Bhaynagar, Synthesis, 1977, 661; (j) B. B. Snider, The Prins and Carbonyl Ene Reactions, in Comprehensive Organic Synthesis, ed. B. M. Trost, Pergamon Press, Oxford, UK, 1991, vol. 2, pp. 527–561; (k) E. Arundale and L. A. Mikeska, Chem. Rev., 1952, 52, 505–555.
- 3 (a) B. M. Trost and H. Urabe, J. Am. Chem. Soc., 1990, 112, 4982–4983;
 (b) P. H. Lee, K. Bang, K. Lee, C–H. Lee and S. Chang, Tetrahedron Lett., 2000, 41, 7521–7524.